Ictal high frequency oscillations distinguish two types of seizure territories in humans.

نویسندگان

  • Shennan A Weiss
  • Garrett P Banks
  • Guy M McKhann
  • Robert R Goodman
  • Ronald G Emerson
  • Andrew J Trevelyan
  • Catherine A Schevon
چکیده

High frequency oscillations have been proposed as a clinically useful biomarker of seizure generating sites. We used a unique set of human microelectrode array recordings (four patients, 10 seizures), in which propagating seizure wavefronts could be readily identified, to investigate the basis of ictal high frequency activity at the cortical (subdural) surface. Sustained, repetitive transient increases in high gamma (80-150 Hz) amplitude, phase-locked to the low-frequency (1-25 Hz) ictal rhythm, correlated with strong multi-unit firing bursts synchronized across the core territory of the seizure. These repetitive high frequency oscillations were seen in recordings from subdural electrodes adjacent to the microelectrode array several seconds after seizure onset, following ictal wavefront passage. Conversely, microelectrode recordings demonstrating only low-level, heterogeneous neural firing correlated with a lack of high frequency oscillations in adjacent subdural recording sites, despite the presence of a strong low-frequency signature. Previously, we reported that this pattern indicates a failure of the seizure to invade the area, because of a feedforward inhibitory veto mechanism. Because multi-unit firing rate and high gamma amplitude are closely related, high frequency oscillations can be used as a surrogate marker to distinguish the core seizure territory from the surrounding penumbra. We developed an efficient measure to detect delayed-onset, sustained ictal high frequency oscillations based on cross-frequency coupling between high gamma amplitude and the low-frequency (1-25 Hz) ictal rhythm. When applied to the broader subdural recording, this measure consistently predicted the timing or failure of ictal invasion, and revealed a surprisingly small and slowly spreading seizure core surrounded by a far larger penumbral territory. Our findings thus establish an underlying neural mechanism for delayed-onset, sustained ictal high frequency oscillations, and provide a practical, efficient method for using them to identify the small ictal core regions. Our observations suggest that it may be possible to reduce substantially the extent of cortical resections in epilepsy surgery procedures without compromising seizure control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Op-brai130277 1..15

High frequency oscillations have been proposed as a clinically useful biomarker of seizure generating sites. We used a unique set of human microelectrode array recordings (four patients, 10 seizures), in which propagating seizure wavefronts could be readily identified, to investigate the basis of ictal high frequency activity at the cortical (subdural) surface. Sustained, repetitive transient i...

متن کامل

Ictal and Interictal Electroencephalography of Mesial and Lateral Temporal Lobe Epilepsy; A Comparative Study

Background: Epilepsy is considered as one of the most important disorders in neurology. Temporal lobe epilepsy is a form of epilepsy including two main types of mesial and lateral (neocortex). Objectives: Determination and comparison of electroencephalogram (EEG) pattern in the ictal and interictal phases of mesial and lateral temporal lobe epilepsy. Materials and Methods: This cross-sectiona...

متن کامل

Topographic movie of intracranial ictal high-frequency oscillations with seizure semiology: epileptic network in Jacksonian seizures.

PURPOSE We developed a technique to produce images of dynamic changes in ictal high-frequency oscillations (HFOs) >40 Hz recorded on subdural electroencephalography (EEG) that are time-locked to the ictal EEG and ictal semiology video. We applied this technique to Jacksonian seizures to demonstrate ictal HFO propagation along the homunculus in the primary sensory-motor cortex to visualize the u...

متن کامل

Integration of stationary wavelet transform on a dynamic partial reconfiguration for recognition of pre-ictal gamma oscillations

To define the neural networks responsible of an epileptic seizure, it is useful to perform advanced signal processing techniques. In this context, electrophysiological signals present three types of waves: oscillations, spikes, and a mixture of both. Recent studies show that spikes and oscillations should be separated properly in order to define the accurate neural connectivity during the pre-i...

متن کامل

Neocortical pathological high-frequency oscillations are associated with frequency-dependent alterations in functional network topology.

Synchronization of neural oscillations is thought to integrate distributed neural populations into functional cell assemblies. Epilepsy is widely regarded as a disorder of neural synchrony. Knowledge is scant, however, regarding whether ictal changes in synchrony involving epileptogenic cortex are expressed similarly across various frequency ranges. Cortical regions involved in epileptic networ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 136 Pt 12  شماره 

صفحات  -

تاریخ انتشار 2013